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Abstract 

Diffuse X-ray scattering is studied theoretically from a 
crystal of cubic ZnS having distortion centres at the 
sulphur sites (having T d symmetry). The atomic dis- 
placement due to a distortion centre is expressed as a 
sum of components consisting of radial functions 
combined with the appropriate Kubic Harmonics (KH) 
of Von der Lage & Bethe [Phys. Rev. (1947), 71, 612- 
622]. The final expression for the intensity from the 
distorted crystal is used to study the shape of the 
diffuse spot around the (0,0,l) reciprocal lattice point. 
For isotropic distortion, the diffuse spot has cylindrical 
symmetry about the reciprocal z axis and there is no 
diffuse intensity in the reciprocal plane passing through 
(0,0,/) and normal to the z axis. For anisotropic dis- 
tortion, however, the diffuse spot has fourfold sym- 
metry about the reciprocal z axis. In particular, the 
reciprocal plane normal to the z axis and passing 
through (0,0,l) has four diffuse regions midway 
between the reciprocal x and y axes. 

Introduction 

In diamond structures, in which all the atoms are 
located at special positions having the point symmetry 
~,3m, the atomic charge density departs from perfect 
spherical symmetry and acquires the tetrahedral 
symmetry (3,3m) of the atomic site (Dawson, 
1967a,b,c). Point symmetry of the atomic site is also 
imposed on the lattice vibrations of the atoms; recently 
the anharmonicity of atomic vibrations has been 
studied in white tin in which the atoms lie at sites of 
symmetry 42m (Merisalo & Jarvinen, 1977). In 
principle, the site symmetry of an elastic distortion 
centre in a crystal should also be imposed on the 
distorted crystal, even though the anisotropy of 
distortion may generally be too small to be detected 
experimentally. In case of appreciable anisotropy, 
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however, the symmetry would be reflected in the diffuse 
X-ray scattering from the distorted crystal. In the 
present paper, the form of the diffuse reflexions from 
crystals having anisotropic elastic distortion centres is 
studied theoretically, taking for illustration cubic ZnS 
structure having distortion centres at the sulphur sites. 

Intensity formula 

The intensity J2(S) of diffuse scattering at a point 
defined by the vector S in reciprocal space is given by 
(Cochran, 1956; Cochran & Kartha, 1956) 

J2(S) = Nexp(--2M)IT(S)I 2, (1) 

where N is the number of defects, T(S) the transform of 
each defect and M = 2n 2 fi2 S 2, fi2 being the mean 
square displacement of an atom due to the combined 
effect of all the distortion centres. The defect is defined 
as consisting of positive atoms at positions to which 
they have moved due to the distortion centre and 
negative atoms at positions in the perfect structure. 

Cubic ZnS has the diamond structure in which Zn 
and S atoms are surrounded tetrahedrally by atoms of 
the other type. Taking the origin at the S site and 
referring the face-centred crystal to a primitive rhombo- 
hedral cell, we get 

T ( S ) =  • f ( S ) [ - e x p  (2niS. a,) 
n 

+ exp{2n/S.(a n + un)}l, (2) 

where f (S)  = f s  + fzn exp(2nig.E). In the above, cis 
the vector distance between S and an adjacent Zn 
atom, a n is the vector from the origin to the nth lattice 
point and u n is the vector displacement of the S and Zn 
atoms of the nth unit cell; it is assumed that a n and u n 
are parallel and that the displacements of the pair of 
atoms S and Zn are equal. The latter approximation is 
not justified for atoms near the distortion centre but 
appears reasonable for atoms further away; it is, 
however, not expected to alter the results materially 
since we are interested in the diffuse intensity near the 
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reciprocal lattice points only where the influence of the 
atoms which are near the distortion centre is small. 

On expanding exp{2n'/S.(a,, + u,)} and retaining 
only the first-order term in u,, we get 

T(S) = 2n/f (S) y S.u,, exp (2n'/S. a,,). 
f f  

Ewald's transformation (Ekstein, 1945) gives 

4 
T(S) = - 2re'f (S) Z f S. u(r) exp {27ri(S - H). r} dr. (4) 

V It 

In the above, v is the volume of the cubic unit cell, H is 
the vector to a reciprocal lattice point and the 
summation excludes the reciprocal lattice points cor- 
responding to systematically absent reflexions. It is 
convenient to work with the cubic unit cell since the 
direct and reciprocal axes coincide in this case. 

Putting 2n(S - H) = k, and retaining only that term 
of the summation which corresponds to the reciprocal 
lattice point which is nearest to the point defined by S, 
we get 

87rf(s) ls~ 
T(S) = G(U), 

where G(k) = i f u(r) cos Hr exp (ik. r) dr. In the above, 
cos Sr is replaced by cos Hr since H and S nearly 
coincide in the neighbourhood of a reciprocal lattice 
point. 

Let (l~,12,13) be the direction cosines of the vector H, 
and (r,04o) and (x,y, z)the spherical and Cartesian 
coordinates respectively of the point defined by vector r 
with respect to the axes of the cubic unit cell. Then 

cos Hr = l~ sin 0 cos tp + 12 sin 0 sin ~0 + l 3 COS 0. 
(6) 

Using the Kubic Harmonics of Von der Lage & Bethe 
(1947) and truncating the expansion at fourth-order 
terms, u(r) can be expressed as 

u(r) = ~c(r) + Ua,~(r) + 6u~,,(0, 

where 

Ua,3(r) = F3(r){xyz/r 3 } 

and 

& c , 4 ( r )  m- G 4 ( F )  , 
X 4 ..f. y 4  + Z4 3/ .  

J r 4 5 

zt(r), F3(r ) and G4(r ) are spherically symmetrical 
functions of r which become zero at r = 0. 

Substituting for cos Hr and u(r) from expressions (6) 
to (9) in (5), we get 

x {l~ sin 0 cos ~o + 12 sin 0 sin ~o 

+ 13 COS 0} / e'~'' dv. (10) 
..I 

The expansion of eik-rin spherical harmonics is (Powell 
& Craseman, 1961) 

e'~"'= 4n ~ i I Y~'m(O*,&)Yf'(O,~o)jt(kr). (11) 
1, m 

0, ~0 and 0", ~0" are the spherical angular coordinates of 
r and k, respectively. In order to evaluate the integral in 
(10), the expression within square brackets was 
expressed as a linear combination of tesseral har- 
monics. Expression (11) was substituted for e '~''', and 
the integral evaluated by making use of the orthogonal 
property of spherical harmonics. The final expression 
for T(S) is 

8gf(S) lSI  
(5) T(S) = [(~e(S) + Ga,3(S ) + Gc,4(S)I , 

v 
where 

at ( s )  = - l, ( u c ) C ~  + 12 ( ~ D s l  

+ l 3 zic)C ; 

[, f '  f2,, , ~ , G~,,(S) = i [  ' [5J3-5 (F4)S~--~--5 (F4)$4 

2 ~ 7  } [' 1 2 /2 /2~n,  - -  
(F2)S~ + 121-~td-~(F4)Cs4 

;I~(F4)CI-~~5(F2)CI } 
l~4  [--n~ F ~ £  }] 

( 7 )  -t-3{ ~J5( 4 ) S ;  - (F2)S~; 

: -  + g ( a , > c j  

/ 42  (8) 74 n - 9  
+ -i-S--g(G,)C~ (G,)C~ 
4j , } (4/s, 

(9) ~ ~(G3)CI + IE(-~,,I-~(G,)S~ 

- ~  4 2 /~  Z l  "3 4 ~ 1-'~ + = ( G 3 ) S l  + ( G , ) S ~  
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/ 
(45  16/  

+ t3 

+ - i -~J -~ (Gs )  C 4 . (12) 

In the above, 

(Uc) = f 4nr2 tic(r)J,(kr) dr, 

( F . )  = f 4~r 2 F3(r).~(kr ) dr 

and 

(Gn) = f 4nr 2 G4(r)jn(kr) dr, 

and the tesseral harmonics are as defined in Prather 
(1961) and refer to k space. A convenient form for the 
functions tc(r ), Fa(r ) and G4(r ) is, as used by Dawson 
(1967, a,b,e) in the study of covalent bonds in diamond 
structures, {ar 2 exp(-br2)}, where a and b are 
constants to be adjusted with experimental data. For 
tic(r), Cochran (1956) has used a function following the 
inverse square law; this function becomes infinite at r = 
0. Cochran's expression for intensity and the one 
obtained in this paper for the isotropic term give a 
similar shape for the diffuse spot. 

Discussion 

The expression for T(S) simplifies if diffuse scattering is 
studied around a reciprocal point (0,0,/), because then 
l 1 and/2 become zero and l 3 becomes unity, and we get 

8nf(S) lSI {( 2 (  4~n T ( S ) -  v --2 fic)C°--~ -~(G,)C ] 

16 /-n-~ " o 4 5 ~  \ 

+((~----~(F4)S24-~(F2)S~)}.(13) 

In the absence of anisotropic terms, we get 

T(S)=8nf(S)ISI( v -- 2N/f (u  c ) C ° ) . (14) 

The diffuse spot for isotropic distortion, shown in Fig. 
1 (a), is dumb-bell shaped (roughly like the p~ atomic 
orbitals for hydrogen); the exact intensity distribution 
will of course depend on the function tc(r ). There is 

cylindrical symmetry about the H vector, and the 
diffuse spot is centrosymmetrical about (0,0,/); 
however, the sign of T(S) is different on the two sides 
of the reciprocal lattice point. It may be mentioned that 
the centrosymmetry of the diffuse spot is approximate 
because of the factors I SI and f (S)  in T(S); these 
factors change slightly for different regions of the 
diffuse spot. There is no intensity in the reciprocal plane 
passing through (0,0,l) and normal to H. 

The influence of the centrosymmetrical anisotropic 
term ~Uc,4(r ) in u(r) is to add terms containing C °, C O 
and C 4 in the expression for T(S). These terms leave 
the diffuse spot centrosymmetrical and do not give any 
intensity in the reciprocal plane through (0,0,l) normal 
to H. Terms with C o and C3 ° leave the spot cylindrically 
symmetrical, but the term with C 4 gives it fourfold 
symmetry. 

The influence of the anti-symmetrical term Ua.3(r ) in 
u(r) is to add the imaginary part containing terms with 
S 2 and S 2 in T(S). These terms reinforce each other 
and give maximum intensity with fourfold symmetry in 
the reciprocal plane through (0,0,l) and normal to H 
(Jahnke & Emde, 1945); the regions of diffuse 
intensity, shown in the broken line in Fig. l(b), are 
present midway between the x* and y* reciprocal axes 
through (0,0,l). The exact intensity distribution will, 
however, depend on the function Fa(r ). This intensity 
comes in the reciprocal plane where other terms 
[including the dominant term tic(r)] give zero intensity, 
and hence has the brightest chance of being seen experi- 
mentally. The estimated intensity in this plane should 
also be reasonably free from series truncation errors, 
since the next anti-symmetrical term in the KH series is 
only Ua,7(r ). 

z* : ,  

(a) (b) 

Fig. 1. Diffuse spot around (00/) reciprocal lattice point for (a) 
isotropic distortion and (b) anisotropic distortion. The lobes 
shown by broken lines in (b) have maximum intensity in the 
reciprocal plane through (00/) and normal to z*. The diagrams 
are merely illustrative; the change in shape of the lobes along z* 
due to anisotropy is not shown. 
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The diffuse spot around (h,0,0) and (0,k,0)will of 
course be similar; the coefficients of l I and l 2 in (12) 
acquire the same form as that of the coefficient of l 3 on 
appropriate transformation of axes. 

In order to observe these diffuse spots, single crystals 
of cubic ZnS doped with, say, Se must be grown. Se is 
expected to replace S and form distortion centres of T d 
symmetry. The difficulties in these experiments are the 
faintness of the diffuse scattering due to low strength of 
the substitutional distortion centres, and the presence of 
thermal diffuse scattering. However, by working at low 
temperatures, it may be possible to observe the 
anisotropic effect in the reciprocal plane (normal to H) 
through some strong axial reflexion. 
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Abstract 

A restrained least-squares (RLS) computer program 
and two interactive graphics (IG) systems have been 
used in combination to refine the structure of deer type 
III hemoglobin. By alternating applications of RLS 
with examinations and corrections of the atomic model 
superposed on electron density maps (IG), the residual 
has been reduced from ~0.42 to ~0.25 and the sites of 
dubious fit between model and map reduced to ~6% of 
the residues or ~3% of the atoms. It was possible to fit 
routinely ~4600 atoms to X-ray intensity data sets 
ranging from less than 6000 (9 .0-4 .0 / t ,  resolution) to 
~21 500 points (6.0-1.98 A resolution) employing 
RLS, which uses interatomic distances to retain 
structural integrity. Convergence was rapid and many 
shifts greater than 1 A were recorded. An in-house 
graphics display allowed the placement of atoms not in 
the original atomic model and GRIP, a fast-response 
interactive graphics system, was used to correct any 
gross conformational misfit of the atomic model to the 
electron density maps. The man hours needed to run 
both GRIP and RLS is less than previously reported 
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real-space methods. The strategy of how RLS and IG 
can be best applied and how the molecular structure 
changed during refinement are discussed. 

Introduction 

A key factor in an X-ray protein structural refinement 
is the improvement in the interpretability of the electron 
density maps so that structural features are more 
readily perceived. The use of high-resolution X-ray 
data to improve the atomic coordinates of a macro- 
molecule whose basic structure is 'solved' at low 
resolution has followed diverse paths (Blundell & 
Johnson, 1976). Until recently, the refinement methods 
reported were: real-space fitting by visual fit in a 
Richards Box (Richards, 1968) or its present equiva- 
lent, the electronic optical comparator (Collins, Cotton, 
Hazen, Meyer & Morimoto, 1975); automated real- 
space fitting (e.g. Diamond, 1966, 1974; Huber, Kukla, 
Bode, Schwager, Bartels, Deisenhofer & Steigemann, 
1974; Freer, Alden, Carter & Kraut, 1975; Ladner, 
Heidner & Perutz, 1977; Moews & Kretsinger, 1975); 
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